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An experimental study was performed to further understanding of turbulent mixing 
in a two-layer fluid subjected to shear-free turbulence. At low Richardson numbers 
Ri ( = AbDS,/Ka, where Ab is the buoyancy jump, D ,  is the depth of a mixed layer 
and K is ‘action’) the entrainment seems to occur through the eroding effect of large 
eddies, whereas at high Ri the large eddies flatten at the density interface and the 
quasi-isotropic eddies near the interface are responsible for the entrainment. The 
buoyancy transfer can be well described by a gradient-transport model when the eddy 
diffusivity is properly defined. At or just above the entrainment interface, the 
buoyancy flux is of the same order as the dissipation, and the diffusive-flux 
Richardson number tends to a constant. 

The thickness h of the interfacial layer was measured in three different ways and 
was found to grow linearly with D, in agreement with preliminary findings of an 
earlier investigation of Fernando & Long (1983). The buoyancy gradient in the 
interfacial layer waa found to be constant, and the resulting buoyancy conservation 
law was experimentally verified. The frequency of the interfacial-layer waves appears 
to vary as Rik The present results, together with the results of the earlier work of 
Fernando & Long, show a good agreement with a theory of Long (1978b) for 
behaviour at high values of Ri. The closure assumptions of that theory were also 
verified by our measurements. 

1. Introduction 
Turbulent mixing in a stably stratified fluid remains a perplexing problem of fluid 

mechanics. Because of its importance in understanding numerous geophysical 
phenomena (for example, clear-air turbulence in meteorology and turbulence in the 
pycnoclines in oceanography) and its large number of technological applications (see 
e.g. Fisher et aE. 1979; Fernando 1983), much research effort continues, directed 
toward a basic understanding of the fundamental aspects of the entrainment process. 

Pioneering experiments on turbulent entrainment were performed by Rouse & 
Dodu (1955), and interest was reawakened and stimulated by Turner (1968), who 
showed that the entrainment coefficient is a function of Richardson number. Since 
the work of Turner, a large number of entrainment experiments have been performed, 
most of which concentrate on the entrainment laws, i.e. the time-dependency of the 
mixed-layer depth, and the relationship of the entrainment coefficient to the 

t Present address: W. M. Keck Laboratory of Hydraulics and Water Resources, California 
Institute of Technology, Pasadena, CA 91125. 
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Richardson number. This is a reasonable first approach to the problem and we have 
made such measurements in an earlier paper (Fernando & Long 1983), but, 
ultimately, we need to understand the more fundamental aspects of entrainment, for 
example the mixing mechanism and the nature and the mechanics of the interfacial 
layer, which appears to play a crucial role. We note also that most of the exist- 
ing theoretical mixed-layer formulations employ integral balances of momentum, 
buoyancy and energy, and the resulting equations are solved by conventional closure 
assumptions. Such theory has proved useful in this and other problems, but it leaves 
something to be desired in furthering basic understanding. 

Specific problems of turbulence in stratified fluids can be very complex, for example 
the late wake of a submarine moving about in a thermocline, but, even in such applied 
research, the investigator feels the need for guidance and understanding that can only 
come from basic research on simpler systems. Measurements of entrainment velocities 
in stratified-fluid turbulence may be taken to be analogous to measurements of mean 
velocity in a boundary layer in that both are interesting and obviously needed for 
many purposes, but more recent research in shear turbulence has stressed the 
importance of detailed measurements ; for example, the relationship of bursting 
frequencies to outer and inner variables. Similarly, we may argue that we need 
detailed measurements of the buoyancy flux and dissipation terms in the energy 
equation to see if they are comparable. Although perception of this need motivates 
the present study, and to some extent the recent earlier one (Fernando & Long 1983), 
we acknowledge the priority and importance of still earlier measurements of the 
properties of grid-generated turbulence in homogeneous and stratified fluids (primarily 
spectra, r.m.s. velocities and integral lengthscales), by Bouvard & Dumas (1967), 
Thompson & Turner (1975), Hopfinger & Toly (1976) and McDougall (1979). 

Our experiment is with a two-layer stratified-fluid system in which turbulence is 
created in one layer by a horizontal grid oscillating vertically with small amplitude 
as shown schematically in figure 1.  The choice of this particular experiment was made 
for many reasons : (i) an oscillating grid is easy to construct and run ; (ii) the turbulence 
it produces may be analogous to certain natural sources, for example wave-breaking 
in the ocean; (iii) there is a simple energy-source term in the turbulent-energy 
equation associated with it, namely the energy-flux divergence; (iv) there is a simple 
theory (Long 1978a) that the complicated turbulence production of the grid, related 
to the oscillation frequency w ,  viscosity v ,  stroke S and lengths M I ,  M,,  . . . specifying 
the geometry, may be parameterized by a single quantity K (‘action’) having the 
dimensions of eddy viscosity; (v) measurements of grid turbulence in a homogeneous 
fluid exist and support this simple theory (Hopfinger & Toly 1976 ; Dickinson & Long 
1978,1983; McDougalll979) ; (vi) there is a rather involved theory (Long 19783) that 
predicts the behaviour with time and Richardson number of many measurable 
properties of grid turbulence in linearly stratified and two-layer systems, and this can 
serve as a guide for our experiment. Moreover, preliminary indications are that this 
theory makes correct predictions (Folse, Cox & Schexnayder 1981 ; Fernando & Long 
1983) ; this encourages further testing to increase or lessen our confidence in it. It will 
be clearly seen that some of the arguments of the theory are generally applicable to 
stratified-fluid turbulence and this enlarges the scope of possible rewards of such an 
experimental investigation. 

The main purpose of this paper then is to report the continuation of the work 
appearing in Fernando & Long (1983) on fundamental aspects of the turbulent 
entrainment process. As mentioned, we were encouraged to pursue this by the 
excellent agreement between the theoretical solutions of Long (1978 3) and the 
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experimental results of Folse et al. (1981) and Fernando & Long (1983). The reader 
will form his own opinion, but we content that our present results add considerable 
further support to Long’s theory. 

2. Notation 
The paper contains many symbols, because the theory we test is complicated and 

the experiments we report on cannot be described without introducing new symbols. 
Therefore we include a list here for the convenience of the reader: 

constant; 6 = Acr3,/1 
constants (i = 2, . . . , 5 )  depending on the stability of the nonturbulent 

layer 
buoyancy 
r.m.8. buoyancy fluctuations (subscripts denote regions R,, R2 and R,) 
mean buoyancy (subscripts 1 , 2 , 3  and 23 denote regions R,, R2, R, and 

buoyancy of the nonturbulent layer 
buoyancy flux 
universal constants 
constant 
depth of the mixed layer measured from a virtual origin 
depth at which large eddies tend to flatten 
entrainment coefficient 
energy flux (subscripts correspond to the regions R,, R2 and R,) 
acceleration due to gravity 
interfacial-layer thickness (ILT) 
ILT measured by the laser-beam technique 
ILT measured by use of a conductivity probe 
ILT evaluated by use of the buoyancy bnservation equation 
intermittency (subscripts 2, 3,  23 represent regions R,, R, and R, close 

molecular diffusivity of the stratifying agent 
‘action ’, defined by observing the mixed-layer deepening in a homo- 
geneous fluid 
eddy diffusivity 
action defined as Kl = cr, 1 
integral lengthscale 
Ozmidov lengthscale (s,/Ns)! 
mesh size of the grid 
lengthscales specifying the grid geometry 
buoyancy frequency (subscript i denotes the interfacial-layer value) 
h2 + ue Ab/2ai 
buoyancy flux (subscript denotes regions R,, R, and R3) 
molecular diffusive buoyancy flux at the entrainment interface 
total buoyancy flux a t  the entrainment interface 
Ut! - 92 
universal constant (aY/az = r au3/az) 
regions in the stratified system, see figure 1 
local flux Richardson number for stratified shear flow 

R, close to Rs) 

to R2) 
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local diffusive flux Richardson number 
overall flux Richardson number (change of potential energy of the 
stratified fluid/total energy available for mixing) 
global flux Richardson number (change in potential energy of the 
system/net available energy for mixing) 
Reynolds number (= uu Z/v = K , / v )  
Richardson number (Ab D3 , /P)  
Richardson number (Ab D3,/@) 
Richardson number (D, Ab/u2,) 
Richardson number ( V: D 2 , / P )  
Richardson number ( 0: g) 
Richardson number (9 ( A T / T )  6/u2,) 
stroke of the grid oscillations 
time 
temperature 
horizontal turbulent velocity within the patches (subscripts denote the 

regions R,, R, and R,) 
entrainment velocity in a stratified fluid 
Kolmogorov’s velocity scale 
velocity scale characterizing the r.m.s. velocity near the interface 
entrainment velocity by the Kolmogorov eddies 
entrainment velocity by the large-scale eddies 
horizontal turbulent-velocity components 
(Do Ab0$ where Do is the initial thickness of the fresh-water layer and 

vertical turbulent velocity within the patches (subscripts denote the 

vertical r.m.8. velocity of the flattened eddies at the density interface 
r.m.9. velocity of the quasi-isotropic eddies 

a normalizing lengthscale, $Mi(w/N)! 
distance measured from a virtual origin 

constants (i = 1, 2) 
constants (i = 1, 2) 
constant (1 = j?z) 
constant 
thickness of the turbulent boundary layer 
interfacial-layer wave height (subscripts 2 and 3 denote regions R, 
and R3) 
buoyancy jump across the interfacial layer 
temperature jump across the interfacial layer 
dissipation (subscripts 2, 3 and 21 correspond to regions R,, R, and R, 

dissipation in a patch 

temperature fluctuation 
functionals 
Taylor’s microscale 
kinematic viscosity 

Abo is the initial buoyancy jump 

regions R,, R, and R3) 

D*-Z 

D*/d  

close to R,) 

2-D, 

%O 

% 
Ri, 
Ri** 
S 
t 
T 
U 

W 

Ab 
AT 
8 

7 
e 
$ 9  $1 

A 
V 
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density 
r.m.s. horizontal velocity 
grid frequency 
frequency of the interfacial-layer waves 
‘0 ’ represents some reference condition - overbar represents average 

3. Some properties of oscillating-grid turbulence in a homogeneous fluid 
As mentioned in f 1, the integral properties of oscillating-grid turbulence in a 

homogeneous fluid have been extensively studied. Both theoretical and experimental 

K 
6, - - 

2’ 

investigations indicate that 

1 - 2, (2) 

where z is distance from the virtual origin (near the grid), u, is the r.m.s. velocity 
(all three components are of the same order) and 1 is the integral scale. The ‘action’ 
parameter K in (l), which characterizes the grid and its motion, may be evaluated 
in two ways. If we use the definition Kl = a, I?, then, according to Hopfinger & 
Toly (1976), 

CT, = C,  M:S%wz-‘, (3) 

1 = pz, (4) 

and K, = FC, M i g w ,  where C,  is a constant, M ,  S, and o are the mesh size, stroke 
and frequency respectively, and p = p ( S / M ) .  Alternatively, the ‘action’ K can be 
evaluated by observing the increase with time of the depth D, of a grid-induced 
turbulent region in a homogeneous fluid in accordance with D ,  = (Kt)! as reported 
in Dickinson & Long (1983). A simple calculation yields K = 7K, (Fernando 1983). 

Another observed property of oscillating-grid turbulence is the development of 
isotropy within a short distance from the grid (Hopiinger & Toly 1976). For isotropic 
turbulence we may write (Hinze 1975, p. 225) 

where B is the dissipation function, A is Taylor’s microscale and v is the viscosity. Also, 
using a familiar expression for energy dissipation, 

€ = A - ,  4 6  

I? 

where A is a constant, we get 

lRe$, R e , = - ,  UU 1 
V 

where Re, is the Reynolds number and A x 0.63 (Bouvard & Dumas 1967). This is 
comparable to other estimates (Batchelor 1953), but somewhat lower than the 
commonly quoted value of 0.8 (Townsend 1976). Also note that, near the propagating 
turbulent front, turbulence cannot be isotropic (Phillips 1955), so that the above 
results are strictly valid only in regions some distance away. 
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6 ,  

S R ,  

I I I I m 

The energy equation of the form (Thompson & Turner 1975), 

where r is a universal constant, may be integrated to yield a behaviour in agreement 
with (l), 

where 0 represents some reference distance from the grid. Using (1) and (8) together 
with A x 0.61 and (for Turner-type grids) /3 = 0.25,(Hophger & Toly 1976), we 
estimate r x 0.81. 

4. A review of Long’s theory 
For convenient comparison of experimental results and theoretical arguments, we 

give now a brief discussion of the theory of Long (1978b). The reader who is familiar 
with that theory may skip the details of this section and use it only for reference. 
The reader should notice particularly that all the arguments presented in the theory 
are for the case of large Richardson numbers, and so for high stabilities. 

Figure 1 is a schematic view of the development of the mixed layer in a two-fluid 
system in which turbulence is generated by an oscillating grid. If we assume that the 
buoyancyt 6, in the mixed layer (region R,) is uniform and that buoyancy varies 
linearly with depth in the interfacial layer of thickness h (region R3), we may write 

(9) 6, = ba, i- Ab, 

t Buoyancy is defined as b = (p-po)g/po,  where p is the density of the fluid, po is the reference 
density, and g is the acceleration due to gravity. 

FIGURE 1 .  A schematic diagram of a grid oscillating in a two-layer 
stratified fluid with the quiescent fluid above. 
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where 6, is the buoyancy in the undisturbed region and Ab is the buoyancy jump 
across the interfacial layer. The buoyancy in R, is taken to be 

Ab 
63(~) = 6 , + A b - - ( z - D , ) ,  h 

where D ,  is the thickness of the mixed layer measured from the virtual origin. If 
q = --bw is the buoyancy flux, we may integrate the buoyancy equation, 

d6 dq 
dz-dz '  
_ -  

over the mixed layer and over a part of the interfacial layer to yield 

dAb 
92 = D * T '  

where 6 = z-D,,  and R, is a comparatively thin region between R, and R, of 
thickness of order of the amplitude 13, of the interfacial waves.? Since q, = 0 at 6 = h, 
(12) and (13) give a fundamental constant for the problem : 

VZ, = (D,+!jh)Ab. (14) 

Based on the experimental observations, it  is assumed that the interfacial layer 
consists of intermittent turbulent patches caused by sporadic breaking of internal 
waves, and the patches at the entrainment interface which connect the interfacial 
region to the mixed region are responsible for the turbulent transfer of buoyancy to 
the mixed layer. The turbulent-velocity components u, v, w within the patches 
should be of the same order while the turbulence is active, and we may write for the 
region R,, 

(15) 

where u,, b, are r.m.8. velocity and buoyancy fluctuations in the patches, I, is the 
intermittency and we denote universal constants by B,, B,, . . . . Also we assume that 
a turbulent patch generated by wave-breaking in a linearly stratified interfacial layer 
has the property that within it the potential energy 8, b, (where 13, is the vertical 
dimension of the patch) is of the order of the kinetic energy ti!, i.e. 

qa = - B, u3 b3 1 8 ,  

This assumption in Long's theory has apparently been verified recently by Liu (1982), 
who found B, x 0.46. If we now assume for the dissipation ep in the patches the form 

we have 

t R, and 8, me assumed to become smaller and smaller aa the Richardson number Re' = o"* A b / P  
becomes large. Some r.m.8. quantities like vertical velocity w and mean buoyancy b are assumed 
to vary little mrom R,; others like r.m.8. horizontal velocities u, v and gradient d6/& are aesumed 
to vary rapidly across the layer. Buoyancy flux p must be continuous to avoid infinite values of 
%-/at from (11). 

2 FLM 161 
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Notice that if we define as the Ozmidov (1965) length 
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1, - e q y ,  
we find that 8, - 1,. Notice the important points of this discussion, that, to make 
physical sense, the Ozmidov length in intermittent turbulence should be defined in 
terms of ep rather than 8,  i.e. 1, - where N is the buoyancy frequency, and 
that it is proportional to the vertical size of the turbulent patches. Using (15), (16) 
and (18), we obtain 

We note the following. 
(a) Equation (20) shows that the frequency of the eddies (u3/6,) in the interfacial 

layer is of the same order as the local buoyancy frequency, Ni = (Ab/h)i ,  and this 
makes possible the resonant breaking of waves when the amplitude becomes of the 
order of the wavelength (Long 1970; Phillips 1977; Fernando 1983). 

(b) Equations (21) and (22) show that 

q3 = - B, B;l B;’ e3 or q3 - c,. 
Since the energy balance in the interfacial layer may be written 

as, ( b w ) , - E ,  = 0, aZ 
where 9 is the diffusive energy flux, and since (bW), and e,  are of the same order and 
are both energy sinks, we infer that 

(bw), - E 3 .  
a s  

aZ 
-3- 

For future purposes we may also write? 

au3 1 
?=B,q3 ,  A =- 

B, aZ 

(c) The average buoyancy flux in the interfacial layer (a3) can be evaluated in two 
ways. Averaging (25) yields 

q3 h = - A ,  w:, (27) 

t Long (1978b) introduced the notation A , ,  A,, ... to permit such ‘constants’ to vary with the 
stability of the undisturbed layer in case that layer was not homogeneous. Here the As and Bs are 
all universal constants. 
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where w, is the vertical velocity of the eddies in the turbulent patches of the 
region R,. Then, averaging (13) and substituting from (12) and (27), we get 

- A = D * - + - - + - - + - -  dAb hdAb Abdh AbdD, A w3 
h dt 3 dt 6 dt 2 dt . 

The corresponding equations for (20) and (21) for the region of the entrainment 
interface (region R,) become 

In  (29) and (30), w, and S, are well defked in R,, and I,, is the intermittency in the 
region of R,, close to the entrainment interface R, (figure 1). 

To evaluate w, it is necessary to consider two types of eddies in the mixed layer 
near the interface : the energy-containing eddies, which are flattened at the density 
interface with vertical velocities of order w , ~  - Kx/D$, where x = D*-z;  and the 
quasi-isotropic eddies of size S, (which do not feel the presence of thy interface), with 
vertical velocities w , ~  determined by Kolmogorov’s law as wai - Gl 4, where E , ~  is 
the dissipation in the region of R, that is close to the entrainment interface R,. Since 
the flattening of the large eddies does not affect the large-wavenumber region of the 
energy spectrum, we may write eal - IP/D4,, and hence w , ~  - Kt!&D$. Since w , ~  % w , ~  
we infer that w, - w,~. 

We may now- write- 

The dissipation eP in the turbulent patches in the interfacial layer is of order u;/S,. 
Since this quantity is independent of the Richardson number Ri = D i  A b / P  at the 
entrainment interface, Long argued that it should remain independent of Ri 
throughout R,, but of course ep should depend on <ID*.? 

We get 

or, using (20), (33) 

Alternatively, u: can be evaluated by integrating (26) across the interfacial layer and 
using (13). We get 

Comparison of (33) and (34) shows that 

(34) 

t This argument implies that e itself is discontinuous across R,. 

2-2 



30 

Equating coefficients and using ( 1 2 ) ,  we get 

H. J .  8. Fernando and R. R. Long 

D -=-- d& 
~ ~ ( & ~ ~ ~ y  - A * dt 

Also (28) together with (29) and (31) give 

(39) ~ D 6 , (  Ab): * dt 3 dt 6 dt 2 dt ’ 

Equations (36)-(39) and (14) together with the initial conditions determine the 
problem. Although there are 5 equations in 3 unknowns, D,, h and Ab, if we impose 
the condition that D ,  = 0 at t = 0, we find the unique solution if we accept certain 
relationships between the various constants. The results expressed in terms of Kl are 

(40) 

- A , ~ B $ K ~  1 = D  -+--+--+-- dAb hdAb Abdh AbdD,  

D ,  = B, V$ KftA, 

(41)  

(42) 

2% 
(2 +a,) D ,  ’ h = a, D,, Ab = 

1 6A, B! e- D* - a, Ri, 4,  a, = 
Kl at bi(3 +a,) ’ 

where Ri, = Ab D9,/@ and u, = dD,/dt is the entrainment velocity. Also 

Bi a! 
a P = T ’  (43 1 

W D  2 * -  - a4 Ri3,  
Kl 

(44) 2- s - a6 Ri$, 
D,  a6 = XY 

4 a! 

6A, B: B, 
B,a! ,@(3+a1).  Iz3 = a, Ri?, a, = (45 1 

Finally, the r.m.s. buoyancy fluctuations in the mixed layer (b,) and in the region 
of R, close to the mixed layer (ba3) are given byt 

5. Experimental procedure 
The basic experimental set-up and the bulk of the experimental procedure is 

discussed fully in Fernando & Long (1983) and shown schematically in figure 2.  The 
buoyancy measurements in the mixed layer and interfacial layer were made by using 
stationary single-electrode conductivity probes ; the density/depth profiles were 
made using a travelling probe. The visual observations of the interfacial-layer 
structure were made on a shadowgraph either by normal or laser light. A t  various 

Long’s paper has bta/Ab - Rid. This is an error; the exponent should be -1 aa in (47). 
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L d O w g n P h  

RGURE 2. A schematic view of the experimental apparatus. 

depths of the mixed layer and under specially adjusted lighting conditions, the 
interfacial layer was filmed by a 16 mm camera. Wave data (both frequency and 
amplitude) were obtained either from frame-by-frame analysis of the cine film in a 
manner described by Wyatt (1978) or by direct observations of the shadowgraph. 
Usually, the wave height or frequencies at a given depth were calculated by analysing 
fifteen waves or so and taking the average. 

6. The interfacial layer 
6.1. Qualitative observations 

Visual observations were made over extended periods on a shadowgraph using either 
a normal beam of light emerging from a parabolic reflector or a vertical sheet of laser 
light. The interfacial layer was clearly visible and was seen to be separated from the 
well-mixed layer and the quiescent layer by oscillating thin boundary regions 
possessing strong curvature of its density profile. The region of strong density profde 
curvature at the entrainment zone appears distinctly as a thin, wavy, white streak 
in figures 3 and 4 and less distinctly in figures 5 and 6. The fluid near the 
mixed-layer-interfacial-layer boundary is carried to the upper, well mixed layer by 
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FIGURE 3. Shadowgraph observations of the entrainment interface. (The grid is located in the upper 
mixed layer.) In figures 3-8 the numbers on the photographs have the following meanings: 1, region 
of maximum curvature in density; 2, entrainment interface; 3, bottom of the interfacial layer; 
4, internal-wave structure in the interfacial layer; 5, rising dense fluid; 6, structure of the 
impinging eddies on the entrainment interface; 7, oscillations of the bottom of the interfacial layer; 
8, homogeneous mixed layer; 9, steepening of an interfacial wave. 

scouring or splashing by the large-scale eddies impinging on it. The large eddies 
encounter the region of maximum density gradient and then flatten and bounce back. 
During this process, the fluid is ejected into the mixed layer. Figures.5 and 6 depict 
the ripple-like structure caused by impinging mixed-layer eddies appearing in the 
region just above the region of strong density-profile curvature. 

From the foregoing discussion, it seems that the entrainment a t  a density interface 
is caused by the breaking of interfacial waves, rising of the mixed fluid formed by 
the patches on the entrainment interface to the top of the interfacial layer and then 
ejection of this fluid into the mixed layer by the scouring and splashing action of the 
large-scale, energy-containing eddies. Figures 7 and 8 show the observations of the 
interfacial layer on a shadowgraph by a vertical sheet of laser light. Note the wave 
structure inside it and the oscillation of the bottom of the interfacial layer. 
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FIQURES 7 AND 8. Shadowgraph observations of the interfacial layer under the illumination of a 
vertical sheet of laser light. (The grid is located in the upper mixed layer.) 

6.2. Energy budget 
According to (24), the buoyancy flux, the dissipation and the energy-flux divergence 
in the interfacial layer are all of the same order. In  the present experiment, the 
buoyancy flux at the interface was evaluated by differentiating the curve of Ab versus 
t obtained by a cubic-spline fit to the Ab versus t data and then using (12). Dissipation 
E~~ in the region of R, clom to the entrainment interface (figure I)  was calculated using 
( 5 )  and u, = KJpD*, I = PD,. Figure 9 shows a plot of & versus 8, as calculated, 
indicating proportionality with &/E x 1.75. Since they are both sinks and are 
proportional, the energy-flux divergence in the upper part of R, must also be 
proportional to & according to (23). Figure 10 shows the variation of the energy-flux 
divergence with the buoyancy flux. We find the ratio 

&/( -:) x 0.65. 

Notice that (48) is the diffusive-flux Richardson number R,,, which is the zero- 
mean-shear counterpart of the commonly used flux Richardson number R, for 
stratified turbulent shear flows, R, is defined as the ratio of buoyancy flux to the local 
shear production of turbulent kinetic energy. In  the context of oscillating-grid 
turbulence, R,, was first used by Hopfinger k Linden (1982). 

It is worthwhile to mention the evaluations of Linden (1979, 1980) of still another 
flux Richardson number. By dropping a grid through a density interface, he produced 
turbulent mixing, and a flux Richardson number Rf, was evaluated as the ratio of 
the change in potential energy of the system to the energy available for mixing. His 
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E (cm'/s3) 
FIQURE 9. Variation of buoyancy flux & with the dissipation 6 near the entrainment interface: 
A, V,  = 19.53, K = 18.81; x ,  20.22, 18.70; *, 22.83, 17.74; +, 25.67, 15.52, 0,  25.80, 1.96 ( V, in 
om/s, Kin cmp/s). 

0.2 

E'IGURE 

0 0.05 - 0.1 
bw (cm2/s3) 

10. Variation of energy-flux divergence ( -aP/az)B1 with the buoyancy flux 
entrainment interface. The symbols have the same meaning aa in figure 9. 

at the 
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observations indicate that, as the overall Richardson number Ri, (defined below) 
increases, R,, first increases, comes to a maximum and then decreases. McEwan (1983) 
argued that this behaviour may be explained by considering the variation of loss to 
viscous dissipation in the large-scale motions (which does not contribute to the 
mixing) with varying stability. He also showed that, if the flux Richardson number 
R,, is defined as the ratio of the change in potential energy to the net energy available 
for mixing (i.e. total energy supplied less the viscous dissipation at large scales), then 
R,, tends to be a constant. The observed values of R,, are much less than R,,, and 
this discrepancy needs an explanation. Note that both R,, and R,, have the nature 
of a global flux Richardson number, whereas R,, in the present work is local. 

Linden’s (1979) results may also be interpreted in a different qualitative way. For 
our present experiments, as in Linden’s experiments, in which the interfacial-layer 
thickness is a constant fraction of the mixed-layer depth, we may still write 

U 
R,, cc 3 Ri,, 

u* 
(49) 

as in Linden (1979), where RPO is Linden’s flux Richardson number, defined above, 
u, is a characteristic velocity scale for entrainment, representing the r.m.s. turbulence 
velocity near the interface, and R, = D ,  Ab/u2,. A plot of Rf,/Ri, cc u,/u, versus 
Ri, for several different experiments is shown in figure 11.  We note the following. 

(a)  At low values of Ri, the entrainment coefficient is independent of Ri,, 
indicating that the large-scale, energy-containing eddies are responsible for entrain- 
ment. In this case the large eddies do not flatten at the interface, and Long’s 
arguments are not valid in determining entrainment rates. The criterion for eddy 
flattening is discussed in $8.3. 

(b)  At high values of Ri, the entrainment coefficient shows a power-law dependency 
on Ri,. The - f  line is drawn to indicate Long’s (1978 b) prediction for grid-generated 
mixed-layer growth in two-fluid systems. 

6.3. Interfacial-layer thickness 
The development of the interfacial layer of thickness h was observed (i) using a sheet 
of laser light (e.g. figures 7 and 8). In  this case the interfacial-layer thickness h, is 
defined as the estimated average distance between the two points where maximum 
curvature of the density profile can be observed; (ii) plotting salinity/depth 
measurements from a travelling conductivity probe, fitting a least-squares fit to the 
central 70% of the data points in the interface and extending this line until it  
intersects the mean salinities in the upper and lower layers (for more details see 
Crapper & Linden 1974). For this case the definition of the interfacial-layer thickness 
h, is the distance between these intersection points measured along the axis 
corresponding to the probe traverse ; (iii) using the buoyancy-Conservation equation 
(14), together with the assumption that the interfacial-layer thickness h, varies with 
D ,  as h, = a,, D,,  where a13 is a constant. 

(i) Using a sheet of laser light. The variation of h J D ,  with the Richardson number 
when measured with the laser-beam technique is shown in figure 12. At high Ri the 
ratio all = h, /D,  tends to a constant value of approximately 0.15. 

(ii) Using a travelling conductivity probe. Figure 13 shows the variation of 
a,, = h, /D,  with Ri when measured using the conductivity probe. Although at  small 
Ri results show considerable scatter, h, /D ,  seems to tend to a constant value at high 
Ri. A possible explanation for such scatter could be the presence of large excursions 
of the interfacial layer at low Ri, so that an instantaneous density profile is not a 
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FIGURE 11. Variation of Rfo/Rio with the overall Richardson number Ri,. 
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FIGURE 12. Variation of hJD* with the Richardson number Ri meaaured by the laser-beam 
technique: 0, V ,  = 13.38, K = 18.40; A, 15.22, 18.52; 0,  20.58, 18.52; V, 21.8, 18.4; 0, 23.09, 
18.40; x , 24.38, 18.40 ( V ,  in cm/s, K in cm*/s). 
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good indicator of the average profile. To verify this, at each mixed-layer depth, 
several density profiles were taken (usually five) and the interfacial-layer thicknesses 
were calculated for each of them. The resulting h,/D, values together with their 
averages are shown in figure 14. The constancy of the average value of h2/D, indicates 
that the instantaneous profiles cannot be used as an indicator of the average density 
profile, especially at low Ri. The measured average a12 = h,/D, ratio of 0.06-0.07 
is considerably less than that obtained from laser observations. In  part this may be 
due to the difference in the definition of the interfacial layer. As indicated above, the 
conductivity-probe technique neglects the end curvature of the density profiles. 
Observations by Crapper & Linden (1974) are rather different from ours and indicate 
that there is no significant difference between their averaged and instantaneous 
density profiles. This may perhaps be due to the quasi-steady and symmetric nature 
of their experiments, in which the measurements were made with both homogeneous 
layers stirred at the same frequency. Notice also that our h,/D* values are 
considerably less than the measurements of Crapper & Linden, but comparable to 
those of Moore & Long (1971) (0.08) and Wolanski & Brush (1975) (0.062). 

(iii) Using the buoyancy-coneemation equation. Using (14) together with Long’s 
(19783) solution (41) in the form h, = a,,D,, we may write 

D,(1 +!jaI3) = q / A b .  (50) 

A log-log plot of q / A b  versus D ,  is shown in figure 15, and shows good agreement 
with (50). The value of a13 x 0.22 obtained in this way is much higher than that 
obtained from either of methods (i) or (ii) but is comparable to the observations of 
DeardorE, Willis & Stockton (1980) (0.21) and Price (1979) (0.30). DeardorE et al. 
defined the interfacial-layer thickness as the distance between the two points where 
turbulent buoyancy flux is zero and where only a small percentage of the fluid remains 
unmixed. This is consistent with the definitions of Long’s (19783) theory. Price has 
not clearly defined his interfacial-layer thickness. 

FIGUFCE 13. Variation of h,/D,  with the Richardson number Ri meamred by a travelling 
conductivity probe: +, V ,  = 1.53, K = 18.81; 0,  20.22, 18.74; A, 22.8, 1.74; X ,  25.80, 18.95; *, 
25.50, 15.52 (V,, in cm/s, K in cma/s). 
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FIGURE 15. A log-log plot of E / A b  versus D,. Symbols have the same meaning aa in figure 13. 

6.4. Buoyancy transfer at the entrainment interface 
(a)  Turbulent transport of buoyancy 

stratified interfacial layer by defining eddy diffusivity K,  by the equation 
We may show that the eddy-diffusivity concept is useful even in the strongly 

FIGUFCE 13. Variation of h,/D,  with the Richardson number Ri meamred by a travelling 
conductivity probe: +, V ,  = 1.53, K = 18.81; 0,  20.22, 18.74; A, 22.8, 1.74; X ,  25.80, 18.95; *, 
25.50, 15.52 (V,, in cm/s, K in cma/s). 
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K ,  = M w ,  6, I,,, 
B, 

revealing that, with the definition implied by (51), eddy diffusivity is the product 
of the characteristic velocity and length, as is conventional, but now multiplied by 
the intermittency. According to (43)-(45) from Long's theory, 

-2- - K ,  - Kl Ri-:. 
d6ldz (53) 

The ratio K e / K ,  has been found from our data, and is plotted in figure 16, showing 
an excellent agreement with (53). Our discussion indicates that the difficulty with 
eddy diffusivity experienced by Linden (1979) is overcome by assuming that the 
quasi-isotropic eddies are involved in entrainment and by taking intermittency into 
account. 

( b )  Molecular transfer of buoyancy 

In addition to the turbulent transport discussed above, buoyancy transfer across 
an entrainment interface may also occur by molecular diffusion. Crapper & Linden 
(1974) reported that a t  low PBclet numbers the entrainment is entirely molecular- 
diffusive in nature and the interfacial layer resembles a diffusive core. Turner (1965), 
in a study of both heat and salt transfer across a density interface, has found that 
at small interfacial stabilities heat and salt are transported by the turbulent eddies, 
whereas at  high stabilities the molecular mechanisms dominate. Assuming that the 
large-scale eddies are responsible for entrainment, Phillips (1977) has argued that 
when Ri, > (ue/u,) (u, D,/k,)  molecular mechanisms should take over the entrain- 
ment process (k, is the molecular diffusivity of the stratifying agent). 

In  the present experiments, the PQclet number is of order lo5 and could not vary 
over a substantial range. However, the total buoyancy flux qT and the molecular 
diffusive flux qd were determined (molecular-diffusive flux was determined by 
measuring dbldz in the interfacial layer and using qd = k,dS/dz) as a function of 
Richardson number. A plot of qT/qd  (Nusselt number) versus Ri is shown in figure 17. 
Note that a t  moderate Richardson numbers the molecular fluxes are negligibly small, 
but increase as Ri increases. 

6.5. Wave measurements at the entrainment interface 
(a)  Frequency measurements 

The frequency of the interfacial-layer waves wi is of the same order as the buoyancy 
frequency in the layer. Using (43) and (44), we may write the non-dimensional 
frequency as 

As mentioned in 55, the periods of the interfacial-layer waves were determined, and 
a log-log plot of wi D2,/Kl versus Ri, (=  D2,/&) is shown in figure 18. The ratio 
aJa5 determined in this way is about 1.42, compared with 0.66 obtained by Fernando 
dz Long (1983) by observing the conductivity fluctuations a t  the upper part of the 
interfacial layer. The difference in the constants of proportionality is unexplained. 
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A, 20.22, 18.70; *, 22.83, 18.74; 0,  25.80, 18.95 ( V ,  in cm/s, K in cmg/s). 

(b)  Amplitude measurements 

The amplitude of the waves at  the entrainment interface was measured as also 
mentioned in 95. A log-log plot of S,/D, versus Ri, is shown in figure 19. The data 
show considerable scatter, but indicate a decreasing trend, perhaps as Ri? as in 
Long's (1978b) theory. The line drawn corresponds to (44), where a& was evaluated 
using an alternative technique which will be discussed in 97. 

6.6. Intermittent nature of the interfacial layer 
It has been observed both in the laboratory (Crapper & Linden 1974) and in field 
situations (Grant, Moilliet & Vogel 1968; Thorpe 1977; Dillon & Powell 1979) that 
stable layers consist of turbulent patches. Long (1978 b) argued that these patches 
are caused by sporadic breaking of internal waves in the interfacial layer. His solution 
for the intermittency in the interfacial layer from (45) may be rewritten together with 
(15) as 

The recent experimental measurements of Piat & Hopfinger (1981) in a boundary 
layer, topped by a density interface, may be used to find the intermittency in their 
interfacial layer at  a position where it is strongly affected by boundary-layer 
turbulence. Also, since the turbulent-energy supply near the edge of the boundary 
layer is primarily from diffusive flux (Townsend 1976), the flow situation of Piat & 
Hopfinger (1981) has some similarity to oscillating-grid turbulence, in which diffusive 
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FIQURE 17. Variation of qT/qa with Richardson number Ri. 
Symbols have the =me meaning aa in figure 16. 



Mixing in a two-layer j luid subjected to ahear-free turbulence 43 

4 x lo-= n i i 1 

0 

- 

10-2 
104 2x 104 3 x 1 0 4  4 x 1 0 ~  5x104 

FIQIJRE 19. A log-log plot of &,ID, versus the Richardson number 2,. 

0.6 

0.4 

0.2 
- 

- W 8  

W 8  
- 

0.1 

0.06 

0.03 

5 7 10 20 40 60 80 
Ri.. 

3 

FIQURE 20. Variation of - with the Richardson number Ri** = g AT a/Tu% in the 
interfacial layer (from Piat & Hopfinger 1982). 

flux is the only available energy source a t  the entrainment interface. Figure 20 shows 
the variation of I cc ( - a / w O )  (0 is the temperature fluctuation) versus Ri,, 
( = g AT 6/Tu3 at the entrainment interface aa extracted from figure 11 of Piat & 
Hopfinger (1981). In the definition of Ri,,, T, AT and u, represent the temperature, 
temperature jump across the interfacial layer and the friction velocity at the plate, 
and 6 is the boundary-layer thickness. The results show decreasing behaviour of the 
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intermittency factor with increasing Richardson number and lend some additional 
support to (55). Thus the ratio w8/w8 in a stratified fluid depends strongly on the 
stability and cannot be assumed to be a constant as conjectured by Townsend (1957). 

6.7. Experimental veri$cation of the closure hypotheses in Long’$ theory 

As we saw in 94, an important closure assumption in Long’s (1978b) theory is that 
the dissipation in the turbulent patches does not depend on stability, but only on 
the location of the patch in the interfacial layer and on the depth of the mixed layer. 
The resulting equations (36)-(38) can be combined with the observed relationship 
h = a1 D ,  to yield 

Log-log plots of q2, P, Q versus q / A b i  D l  are shown in figures 21-23. These reveal 
excellent agreement with (56)-(58) .t As we have already remarked, the parameters 
A,, A, and A,, introduced in Long’s (1978b) formulation as ‘constants’ depending 
on the stability of the non-turbulent layer, can be treated as universal constants in 
the present problem. 

t The excellence of the agreement in figures 21-23 with the closure conditions (56)-(58) is not 
surprising in view of the excellence of the agreement of the data of Fernando BE Long (1983) with 
the prediction of Long that h / D ,  is constant and that u, D, /K  is proportional to Ri-f, because 
these imply (56)-(58). 

FIGURE 21. A log-log plot of (&& versus Z@AbtDt. Symbols 
have the same meaning as in figure 9. 
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FIGURE 23. A log-log plot of Q versus Kf/Abi D t .  
Symbols have the same meaning as in figure 9. 
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7. Evaluation of the universal constants in Long's theory 
In  view of the excellent agreement between the present experimental results and 

the theoretical predictions of Long (1978b), we find it worthwhile to evaluate the 
various universal constants appearing in 94, especially because some of these 
numerical values may be generally applicable to stratified-fluid turbulence. For 
completeness, B, and a, values from Fernando & Long (1983) have been added : 

D, = B, V$ @ & B, x 12.5, (59) 

h= a,D,, AbD,(2+a1) = 2J3, a, x 0.22, (60) 

and 

e * -  - a,&, 1 I ,  a, x 2.64 X lo5, 
U D  

Kl 

W D  2 * -  - up Ri3, up x 38.7, 
Kl 

a, Ri?, a, x 27.3, 
6 2= 
D* 

9, = - B, U, b, Is,  B, x 0.3, 

B, = - B4 I3 4 , B, x 0.4, 
63 

(66) 

(67) 

Iz3 = a, Ri?, a, = 183.3, 

Ab 
3 3 h  

U: = B, 8, b, = B 6, - , B, x B, % 0.44, 

-- Di = B,, B, x 2127, 
6 2  K;" 

au3 1 
2 = B,q,, B, = - x 1.86 ac A2 

where A, x 2.70 x lo6, A, x 7.29 x loo, A, x 5.28 x 10,. (71, 72, 73) 

In the above list, B,, a,, a,, A,, A, and A, were measured directly. In estimating 
A, and B, we used results of the buoyancy-flux measurements, the dissipation 
estimates with A x 0.61 in (5) and r = 0.81 in (7). ap/a, was measured from the 
interfacial-layer wave-frequency measurements ($6.5). The result a,/a, = (B,/a,)! 
obtained from (43) and (44) was used to  evaluate B,. Note that our value of B, x 0.44 
compares very well with the estimate 0.46 of Liu (1982), who measured the turbulent 
kinetic energy and the potential energy of the eddies when a grid is towed horizontally 
in a linearly stratified fluid. Once a2, A,, a, and B, are known, B, can be calculated 
from (42). B,, B, and a, thus obtained were used to evaluate a, and as. The value 
of a, was checked by independent measurements of wave amplitude as shown in 
figure 19. The line drawn corresponds to the indirectly calculated a5 value. Finally, 
in taking B, x 0.3 we have used the results of Arya (1975). 
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8. Mixed-layer growth at small Richardson numbers 
The involvement of large-scale eddies in the entrainment process at low Ri means 

that the mixing mechanism in a weakly stratified fluid differs from that in a strongly 
stratified one. In this section we discuss the mixed-layer growth mechanism at low 
Richardson numbers. 

8.1. Homagenews ,fluids 
The mechanism of entrainment in a homogeneous fluid subjected to zero-mean-shear 
turbulence is, at present, an open question. According to Corrsin & Kistler (1955), 
the rate of advance of a turbulent front ueK is determined by the balance between 
the viscous diffusion of vorticity and the mean-square rate of stretching of vortex 
lines by the turbulence, i.e. by Kolmogorov’s velocity scale uK = (ve)!. On the other 
hand, it is also possible to argue that entrainment is accomplished by the engulfment 
of the irrotational fluid by the large-scale eddies and the subsequent digestion by the 
small-scale eddies (e.g. Roshko 1976). In  the latter case the deepening rate u,, should 
be proportional to the r.m.8. velocity of turbulence near the interface or u,, - 6,. 
For oscillating-grid turbulence, 8 = Aa;/l and a, N K,/D,,  we may write the 
deepening rates as 

(74) 

if the viscous diffusion of vorticity is important for the mixed-layer spreading, and 

D ,  - (q v)! ti 

D,  - ( K ,  t) i  (75) 

if the entrainment occurs by large-scale eddies. Notice that both hypotheses ive rise 
to a ti law as observed by Dickinson & Long (1983), and, since uel/ueK - Reg, where 
Re, = K J v ,  the two velocities uel and ueK do not differ much in laboratory conditions. 
However, using the observed relationship K ,  a w ,  we may compare the validities of 
(74) and (75) by comparing the predicted variations with w .  Figure 24 shows a plot 
of log (D*/$)  versus logw for the propagation of a front in a homogeneous fluid, using 

f 
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FIQURE 25. A log-log plot of D J y  versus Nt.  The symbols 
have the same meaning aa in Thorpe (1982). 

the measurements of Dickinson (1980). Results show closer agreement with (75) than 
(74), indicating that the propagation of a front created by an oscillating grid in a 
homogeneous fluid is governed by the action of the large-scale eddies. 

8.2. Linearly stratijed jluids 
When a linearly stratified fluid of buoyancy frequency N is agitated by an oscillating 
grid, the growth of the mixed layer passes through different regimes. Near the grid, 
the turbulence is so intense (low Richardson number) that the effects of stratification 
can be neglected, and so the mixed layer propagates as D ,  = (Kt)k, which implies that 
the large-scale eddies are involved in the entrainment. Normalizing the depth of the 
mixed layer with y = &Mi ( o / N ) !  and using K x 7K1, where Kl = C 2 / 3 M k ~ o  from 
(3) and (4), we get 

This expression may be compared with the experiments of Thorpe (1982), who 
measured the time evolution of the fully turbulent region of thicknesa eD*, when a 
linearly stratified fluid is subjected to the turbulence induced by a vertical grid 
oscillating horizontally. Figure 25 shows his data in a log-log plot of D,/y  versus 
Nt. Note that, up to about Nt - 3, the growth can be well represented by D,/y  - (Nt); 
(indicating independence of N )  as in (76), but at  large times (or large Richardson 
numbers) the stratification becomes important and the growth is retarded. The above 
results are also consistent with the observations of Dickey & Mellor (1980) that the 
stratification becomes important at times Nt - 2-3 when a grid is dropped through 
a linearly stratified fluid. 

8.3. Two-fluid systems at small Ri 
Experiments were performed to investigate the mixed-layer deepening in a two-layer 
fluid a t  small Richardson numbers. The grid was placed inside the freshwater layer 
and the initial density jump was kept very small. Observations indicate that the 
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FIQURE 26. A plot of D versus # for a low-Richardson-number 
experiment (V,, = 8.11 cm/s, K = 13.64 cm*/s). 

turbulent front propagates initially as D ,  = (Kt)!, as in a homogeneous fluid. Once 
the front reaches the density interface, the deepening rate drastically decreases owing 
to the damping influence on the turbulence of the density differences. As we have 
mentioned, visual observations indicate that the mixing mechanism involves scouring 
and splashing by the large eddies. The deepening rate seems to follow a D ,  = a& type 
law to  begin with (e.g. see figure 26), but for this regime it is apparent from 
experiments that a depends on V ,  and K. At large times the deepening law tends to 
follow D ,  - V;A Kiftif, and, of course, in this regime small-scale quasi-isotropic eddies 
are responsible for entrainment and the large-scale eddies tend to flatten against the 
interface. 

We may assume that the large-scale eddies tend to flatten when the buoyancy forces 
acting on them are of the same order as the inertial forces, i.e. 

(77) 

where 1 is the integral scale near the interface and y1 is a constant. Using I = BD*, 
we may write 

U: = y1 1 Ab, 

-= ui Ab, or ui = y1/3D,Ab x yl/3q, 
Y1 BD* 

(78, 79) 

where we use (77) and (4) together with (14). Notice that the expression (79) provides 
a new physical meaning for V,. When u, 9 V ,  large-scale eddies do not flatten at the 
density interface and are directly involved in the entrainment process, whereas when 
u, < V,, the large-scale eddies tend to  flatten. In  the present case u, K2//3D,, and 
the depth D,f of the mixed layer at which the large-scale eddies tend to flatten is 
given by 

D,, may be estimated using depth/time records of the mixed-layer deepening if we 
assume that the transition from & behaviour to the behaviour occurs when the 
large-scale eddies tend to flatten and the quasi-isotropic eddies take over the 
entrainment (Long 1978 b). A plot of D, versus Kl /  V, is shown in figure 27. The best-fit 
curve to the data points through the origin, has a dope x 42. Taking /3 x 0.25 we 

D*, = (r l$)-fKz/V, .  (80) 
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eAtimate y1 ~ 2 . 0 3 5 .  Accordggly, the large-scge eddies tend to flatten when 
Ri, x 1800 or Ri x 37, where Ri = D % / Q .  This result may be 
used in usderstanding the obseAved deviation of the Hopfinger & Toly (1976) date 
from the Ri-: behzviour at low Ri. In figure 12 of Fernando & Long (1983), it is clearly 
seen that, when Ri < 37, the data of Hopfinger & Toly (1976) tend to deviate from 
the observed Ri-: behaviour at higher Richardson numbers. 

D : / P  and Xi, = 

FIGURE 28. Variation of Rfd with z /D,  in the mixed layer. For V ,  = 19.53, K = 18.81 experiment: 
A, D ,  = 21.6, For V ,  = 25.80, K = 18.95 experiment: 0,  D ,  = 18; f ,  20; *, 22; X ,  24. ( D ,  in 
cm, V,  in cm/s, Kin  cmz/s.) 
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9. Properties of the mixed layer 
Because of the vigorous turbulent mixing, the buoyancy gradients in the mixed 

layer are extremely weak (e.g. see (46)) and we were unsuccessful in measuring them 
with the conductivity gauge. However, direct measurements of buoyancy gradients 
in the mixed layer have been made by m a n s k i  & Brush (1975), and their 
measurements are not much different from the prediction of (46) (see their figure 8). 
To get some indication of the buoyancy effects in the mixed layer, we may calculate 
R,, at various depths z in this layer. The buoyancy flux q at any z may be written 
as q = qz z/D,, and the dissipation and the energy-flux divergence at any z may be 
evaluated from (5) and (23). Figure 28 shows the variation of Rid with z/D,. Note 
that, in the bulk of the mixed layer, the buoyancy flux is negligible but, as the 
entrainment interface is approached, the buoyancy flux becomes an appreciable part 
of the energy budget. 

10. Discussion and conclusions 
The present experimental study is a continuation of the work of Fernando & Long 

(1983), and deals with fundamental aspects of turbulent entrainment in a two-fluid 
system. It may be useful here to summarize the major findings of the full experimental 
study. 

(i) The time-law of growth of a grid-generated turbulent mixed layer in a two-fluid 
system at high Richardson numbers may be written as (Fernando & Long 1983) 

where the depth of the mixed layer B, and the time t are measured from a virtual 
source plane, whereas in the low-Richardson-number limit mixed-layer growth 
follows the law 

D ,  - (Kt)!.  

The latter excludes the possibility of the involvement of molecular effects in the 
grid-induced turbulent entrainment in a homogeneous fluid, and lends support for 
the concept of entrainment by lage-scale eddies. The Richardson number Ri, where 
the large-scale turbulent eddies are flattened is estimated as about 1800. 

(ii) As entrainment proceeds, the initial two-layer system tends to develop a third 
layer, namely the interfacial layer, within which the buoyancy gradient is constant. 
The thickness of the interfacial layer grows proportionately to the depth of the mixed 
layer, and the ratio h/D,  is independent of the Richardson number. 

(iii) At high Richardson numbers the entrainment law takes the form E cc Ri-f, 
where E is the entrainment coefficient. The observed deviation of the Hopfinger & 
Toly (1976) results from the above law at low Richardson numbers (Fernando & Long 
1983) may be due to the involvement of large-scale eddies in the entrainment process. 

(iv) The buoyancy flux and the dissipation in the mixed layer near the entrainment 
interface are of the same order, and hence the diffusive-flux Richardson number in 
this region tends to be a constant. Also, in the bulk of the mixed layer the diffusive-flux 
Richardson number is negligible, but as the interfacial layer is approached it increases 
rapidly. 

(v) At low and moderate Richardson numbers molecular-diffusive fluxes are 
negligible. 

(vi) Intermittency and the amplitude of the internal waves in the interfacial layer 



52 H .  J .  S .  Fernando and R. R. Long 

decrease with the Richardson number, whereas the wave frequency increases with 
the Richardson number. 

(vii) The experimental results show an excellent agreement with a theory due to 
Long (19783), and the closure assumptions of this theory are also experimentally 
verified. The universal constants appearing in Long’s theory are evaluated. 

(viii) After a certain mixed-layer depth the experimental results deviate from 
Long’s (19783) theory, and it was shown in a preceding paper (Fernando & Long 1983) 
that this may be due to a wall effect. 
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